Tensile properties of PET fibers incorporated with bacteria spores

  • Lucy Ciera Technical University of Kenya, Nairobi, Kenya
  • Fredrick Nzioka Technical University of Kenya, Nairobi, Kenya
  • Wangari Njuguna Bahir Dar University, Bahir Dar, Ethiopia
Keywords: Bacteria spores, PET fibers, extrusion, tensile properties

Abstract

The demand for high-tech textiles with special functionalities is currently increasing. This has led to the continuous effort to modify conventional polymeric textile materials like Polyethylene terephthalate (PET). Previous studies have proved that bacteria spores can be incorporated in PET fibers during melt extrusion. However, the effects of extruding spores in the fibers on the resulting fiber`s tensile properties have not been studied deeply. In this work, tensile tester, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical microscopy (OM) were used to study the tensile properties of PET/spores fibers. Results indicated that tensile strength, Young’s modulus and elongation at break were dependent on spore concentration. Nevertheless, the properties of the resulting fibers were found to be as of same tensile quality as normal PET fibers.

References

Coman D., Oancea S. & Vrinceanu N., (2010)

Gupta D., Indian journal of fiber and textile research. (2011) 36, 321 - 326.

Oerlikon. (2010). A world survey on textile and nonwovens industry, Remscheid, Oerlikon textile GmbH & CO. KG, Volume 9.

Broda J., Gawlowski A., Fabia J., Slusarczyk C., Fibers and textiles in Eastern Europe, 2007, 15, 30 - 33.

Gashti M. & Moradian S. (2012) Journal of Applied Polymer Science, 125, 4109 - 4120.

Zeng X., Lin D., Cai X., Zhang X., Tan S. & Xu Y. (2012) Journal of Applied Polymer Science, 126, 601 - 607.

Gao Y.& Cranston R., Textile Research Journal (2008) 78, 60 - 72.

Risti? T., Zemlji? L., Novak M., Kun?i? M., Sonjak S., Cimerman N. & Strnad S. (2011) communicating current research and technological advances, 6, 36 - 51.

Bang H., Kim H., Jin F., Woo J. & Park S. (2011) Bulletin of the Korean chemical society, 32, 542 - 546.

Park S., Kim H., Jin F. & Park S. (2010) Bulletin of the Korean chemical society, 31, 2637 - 2643.

Vihodceva S., Kukle S. & Barloti J. (2011) Materials Science and Engineering, 23, 012037.

Kusuktham B. (2012) Journal of applied polymer science, 124, 699 - 705.

Hong K., Park J., Sul I., Youk J. & Kang T. (2006) Journal of Polymer Science Part B: Polymer Physics, 44, 2468 - 2474.

Williams J., HaloSource V. & Cho U. (2005) American Association of Textiles Chemists and Colorists Review, 5, 17 - 21.

Shao-Yun F., Xi-Qiao F., Bernd L. & Yiu- Wing M. (2008) Composites: Part B., 39, 933 - 961.

Ciera L., Beladjal L., Gheysens T., Almeras X., Nierstrasz V. Van Langenhove L.& Mertens J. (2014) Fibers and Textiles in Eastern Europe, 22, 102 -107.

Doudou B., Dargenty E. & Grenet J. (2005). Journal of Plastic Film & Sheeting. 21, 233- 251.

Popham D., Sengupta S. & Setlow P. (1995) Applied and environmental microbiology. 3633–3638.

Beaman T.& Gerhardt P. (1986) Appl. Environ. Microbiol. 52, 1242–1246.

Gerhardt P.& Marquis R. (1989) Spore thermoresistance mechanisms, p. 17–63. In I. Smith, R. Slepecky, and P. Setlow (ed.), Regulation of prokaryotic development. American Society for Microbiology, Washington, D.C.

Furukawa S., Narisawa N., Watanabe T., Kawarai T., Myozen K., Okazaki S., Ogihara H. & Yamasaki M. (2005) International Journal of Food Science and Technology, 102, 107 - 111.

Boesel L.& Reis R. (2008) Progress in polymer science, 33, 180 - 190.

Wiencek K., Klapes N., & Forgrding P. (1990) Applied Environmental Microbiology, 56, 2600 - 2605.

Boesel L.& Reis R. (2008) Progress in polymer science, 33, 180 - 190.

Espigares I., Elvira C., Mano J., Vazquez B., San Roman J. & Reis R. (2003) Biomaterials, 23, 1883 - 1895.

Deshmukh S., Rao A., Gaval V., Seena J & Mahanwar P. (2010) Journal of Minerals & Materials Characterization & Engineering, 9, 831 - 844.

Supova M. (2009) Materials in Medicine, 20, 1201 - 1213.

Zupin Z.& Dimitrovski K. (2010) Woven Fabric

Lee J. & Yeea A. (2000) Polymer, 41, 8363– 8373

Zi-Kang Z., Yong Y., Jie Y. & Zong-Neng Q. (1999) Journal of Applied Polymer Science, 73, 2977 - 2984.

Li G., Helms J., Pang S. & Schulz K. (2001) Polymer Composites, 22, 593 - 603.

Reynaud E., Jouen T., Gauthier C., Vigier G. & Varlet J. (2001) Polymer, 42, 8759 - 68.

Fan Y., Lou J. & Shinozaki D. (2007) Applied Polymer science, 103, 204-210.

Published
2019-06-06
Section
Articles