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ABSTRACT  

 Accurately estimating design peak flow is a fundamental and frequently encountered task in engineering 

hydrology. This estimation is crucial for planning civil infrastructure related to water storage, diversion, 

conveyance, and crossing of waterways. The aim of this study was to propose a new model for estimating 

design peak flow in ungauged catchments, using morphometric characteristics of the catchment as input 

variables. To achieve this, daily streamflow records from gauged catchments were analyzed, and the 

annual maximum daily flows were extracted. Flood frequency analysis at each site was performed to 

determine peak flow values corresponding to return periods of 10, 25, 50, 100, and 200 years. Drawing 

on prior research, key morphometric parameters namely catchment area, longest stream length, channel 

slope, and circularity ratio were identified as significant predictors of peak flow. These variables were 

then linked to the flow quantiles using regression analysis. The findings revealed that the Pearson Type 

III, General Extreme Value, Log-Normal, and General Pareto distributions provided the best statistical 

fit for the sub-basin data. The regression results demonstrated a strong correlation between design peak 

flows and the selected morphometric features, with coefficients of determination (R²) ranging from 0.962 

to 0.993. The resulting models offer a practical and simplified approach for estimating design peak flows 

in ungauged catchments within the Lake Tana sub-basin and other regions with similar hydrological 

characteristics. 
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1. Introduction  

Efficient and effective water resources management and development requires reliable estimates of the hydrologic 

variables like low, mean and peak flows that require the use of appropriate engineering hydrology techniques. Some 

of these hydrologic variables, for example, floods, have recurrent phenomenon that causes many socio-economic 

losses. Even in April 2024 we observed many devastating floods in east Africa and Asia that brought the loss of many 

lives. This phenomenon commonly occurs across Ethiopia, varying in timing and intensity (Tegegne et al., 2020). 

This is due to heavy rainfall from highland areas causing extensive large-scale flooding, also known as riverine floods, 

in the nation's low-lying regions. When rivers breach their banks and submerge downstream floodplain land, resulting 

in flood disasters (Desalegn et al., 2016; Ukumo et al., 2022). In 2006, severe flooding affected parts of the country, 

with Lake Tana remaining one of the regions most prone to recurring inundation (Tegegne et al., 2020). Accurate peak 

flood estimation is vital for safeguarding human lives and infrastructure, optimizing water resource utilization, and 

preserving environmental integrity (Rabba, 2023).  

A variety of techniques are available for estimating peak floods, including the rational method, empirical formulas, 

the unit hydrograph approach, and statistical or probabilistic flood frequency analyses (Othman et al., 2013; Rabba, 

2023; Stuckey & Reed, 2000; Vassova, 2013). Flood frequency statistics have been applied in various water resource 

projects, including floodplain management, bridge engineering, and the design of flood control infrastructure 

(Vassova, 2013). Obtaining techniques that generate dependable flood flow data are essential for engineers and 

planners to incorporate into the planning and execution of these projects (Stuckey & Reed, 2000). The selection of an 

appropriate method for peak flood estimation is influenced by the availability and reliability of data, as well as the 

type and expected lifespan of the project (Ahn et al., 2014; Topaloǧlu, 2002).  

Traditional flood frequency analysis is straightforward to apply when estimating design peak flow in gauged 

catchments with adequate historical flow records. In contrast, for ungauged catchments, empirical approaches that 

rely on morphometric characteristics such as catchment area, slope, and shape factor are commonly employed to 

estimate peak discharge (Stuckey & Reed, 2000; Vassova, 2013). Jha, R., and Smakhtin, V. (2008) identified a range 

of techniques for estimating flood characteristics and long-term mean annual flow, primarily through regression 

models that incorporate catchment parameters.  

Numerous studies have explored the relationship between catchment morphometric attributes and various flow 

characteristics, including low, mean, and peak flows. For instance, Dubreuil (1986) highlighted research conducted in 

tropical regions demonstrating that drainage area and slope significantly influence most hydrological parameters, 

particularly peak flow. Similarly, Garzon et al. (2023) identified catchment area and average slope as critical factors 

governing peak flow magnitudes. In another study, Sandrock et al. (1992) employed multiple regression analysis to 

compare flood peaks across different return periods with various morphometric features. Further contributions by 

Sandrock et al. (1992), Stuckey and Reed (2000), and Topaloǧlu (2002) also utilized regression techniques to establish 

predictive relationships between flow statistics and watershed characteristics. 

Hydro-climatic measurements in Ethiopia are very scanty. In Ethiopia, the majority of catchments requiring design 

peak flow estimates lack gauging data (Mulugeta, 2004). Tassew et al. (2021) highlighted the scarcity and unreliability 
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of hydro-meteorological data within the Tana sub-basin. Notably, nearly all streamflow gauging stations are 

concentrated in the upper reaches, leaving the lower portion accounting for approximately 40% of the sub-basin 

completely ungauged (Engida, 2010). Besides, there are no sufficient, validated, and standardized alternative peak 

flow estimation methods in the sub-basin and elsewhere in Ethiopia. 

The Lake Tana sub-basin is rich in natural and cultural resources including abundant water, fertile land, hydropower 

potential, livestock, forests, fisheries, and heritage sites that contribute significantly to both local and national 

livelihoods. Its vast potential for irrigation, hydroelectric generation, agriculture, and ecotourism makes it a vital asset 

for regional and national development (Setegn et al., 2008). It is one of the identified growth corridor areas by the 

federal democratic Republic of Ethiopia (Belete, 2013). However, flooding is one of the most serious problems in the 

sub-basin (Tassew et al., 2021). The objective of this paper was to develop an alternative design peak flow estimation 

model for the ungauged catchments using catchment morphometric features as input variables. Thus, findings will 

support the water resources management and development efforts through the provision of applicable engineering 

hydrology techniques. 

2. Materials and Methods  

2.1. Study Area   

The Lake Tana sub-basin serves as the headwaters of the Abbay (Blue Nile) River, contributing over 60% of the Nile's 

total water flow (Tassew et al., 2021). Geographically, it lies on Ethiopia’s northwestern plateau, spanning latitudes 

10.9° N to 12.8° N and longitudes 36.7° E to 38.2° E (Fig. 1). At the mouth of the sub-basin sits Lake Tana, a natural 

treasure of Ethiopia (Belete, 2013). The sub-basin covers a drainage area of approximately 15,321 km², including the 

lake itself (Ashenafi, 2013). Elevation within the basin ranges from 1,765 to 4,097 meters above sea level, with the 

terrain around the lake being relatively flat, typically between 1,750 and 1,850 meters. The region experiences an 

average annual rainfall of about 1,350 mm, with values ranging from 964 mm to 2,000 mm (Awlachew et al., 2007). 

Characterized by a tropical highland monsoon climate, the wet season extends from June to September. The sub-basin 

has an average annual temperature of 20°C and a mean yearly evapotranspiration of 773 mm. 

 
Fig. 1. Location map of the study area 
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2.2. Data types and collections 

Acquiring reliable streamflow measurements is a fundamental and preliminary step in hydrological studies. In the 

Lake Tana sub-basin, thirteen streamflow gauging stations were initially identified, and daily flow data from these 

sites were obtained from the Ethiopian Ministry of Water and Energy. Based on criteria such as data completeness, 

record length, and consistency, eight of the thirteen stations were selected for detailed analysis. The geographic 

locations of these selected stations, along with maps of their respective catchments, are presented in Fig. 2. From the 

daily datasets, annual maximum daily flow series were extracted and utilized for flood frequency analysis. 

 

Fig. 2. Location of selected gauging stations (a) and map of selected catchments in the sub-basin (b) 

Stations with less than 20 years of continous records and stations that have homogeneiuty problems were screened out 

intitially. Years of recording periods for gauging stations are shown in Table 1. As illustrated in Fig. 3, the time series 

plots for the Ribb and Kility Rivers reveal inconsistencies and potential issues in the measurement of annual maximum 

flow data. Following the preliminary data processing and screening homogeneity and trend tests were done before 

using the data sets for quantile estimation. 

  

Fig. 3. Ribb River daily discharge (a) and Kility River annual peak flow hydrograph (b) 

Over flow 
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Table 1.  Years of recording periods of gauging stations 

Station Name G.Abay Garno Gemero Gumara Megech Qushini Gelda koga 

Recording length 

(years) 49 20 23 30 21 23 28 27 

A Digital Elevation Model (DEM) with a spatial resolution of 30 by 30 meters for the Lake Tana sub-basin was 

obtained from the GIS department of the Ministry of Water Resources and Energy. The DEM was processed and 

analyzed using ArcGIS 10.3 and Arc Hydro 10.3 to extract key morphometric characteristics of the catchment. 

2.3. Exploratory Data Analysis (EDA) 

Exploratory data analysis (EDA) is a method that utilizes graphical tools to investigate, interpret, and effectively 

communicate the underlying patterns and characteristics of a dataset. Zbigniew W. K. and Alice J. R. (2004) have 

noted that a study that does not include a detailed exploratory data analysis is not complete. EDA can give strong 

insight into patterns and relationships. Time series plots, box plots, and probability plots were used to get insights into 

the patterns and distributions of the data sets.  

2.4. Trend and Homogeneity Tests 

Prior to quantile estimation, tests for trend and homogeneity were conducted on the annual maximum daily streamflow 

data series. Dahmen and Hall (1990) recommended the use of Spearman’s rank-correlation method for detecting linear 

trends due to its simplicity and non-parametric nature. This method is widely applicable and maintains consistent 

statistical power across both linear and non-linear trend scenarios. In this study, Spearman’s rank-correlation was 

employed to assess the presence of linear trends in the annual maximum daily streamflow series. The approach is 

based on the Spearman rank-correlation coefficient, 𝑅𝑠𝑝, which is defined as: 
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Where tt, has Student’s t-distribution with v = n-2 degrees of freedom.  
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The distribution is symmetric around 𝑡 = 0 . At a 5% significance level (two-tailed), the critical region 𝑈 is defined 

as: 𝑈 = (−∞,𝑡𝑣,2.5%)∪(𝑡𝑣,97.5%,+∞). If the calculated 𝑡𝑡 falls outside this range, the null hypothesis is rejected, 

indicating a significant trend in the time series. In such cases, the data series is considered unsuitable for frequency 

analysis (Dahmen and Hall, 1990). 

To evaluate the homogeneity of the streamflow data, the Mann–Whitney test was employed, as recommended by Salas 

(1993). This non-parametric test compares two segments of the dataset—of sizes 𝑛1and 𝑛2, where 𝑛1<𝑛2. The 

combined dataset of size 𝑁=𝑛1+𝑛2 is ranked in ascending order. The test assesses whether the means of the two 

segments are statistically equivalent using the Mann–Whitney test statistic 𝑈𝑐. 

𝑈𝑐 =
∑ 𝑅(𝑥1)−

𝑛1(𝑛1+𝑛2+1)

2
𝑛1
𝑡=1

√(
𝑛1𝑛2(𝑛1+𝑛2)

12
)

                                                     (4) 

In the Mann–Whitney test, 𝑅(𝑥𝑡) represents the sum of the ranks assigned to the elements of the first sample within 

the combined, ordered dataset. The test statistic 𝑈𝑐 is then used to evaluate the hypothesis of homogeneity between 

the two samples. To determine whether the data series is homogeneous, 𝑈𝑐 is compared against the critical value from 

the standard normal distribution at a chosen significance level 𝛼. The null hypothesis that the two segments have equal 

means is rejected if: ∣𝑈𝑐∣ > 𝑢1−𝛼/2. Where 𝑢1−𝛼/2 is the critical value corresponding to the 1−𝛼/2 quantile of the 

standard normal distribution. If this condition is met, it indicates a statistically significant difference between the two 

segments, suggesting that the data series is not homogeneous. 

2.5. Descriptive Statistics   

For a dataset containing 𝑁 observations {𝑥1,𝑥2,…,𝑥𝑁}, key statistical measures such as central tendency, variability, 

and distribution shape are calculated using standard formulas. These include the arithmetic mean, variance, standard 

deviation, coefficient of skewness, and coefficient of kurtosis.The sample mean, 𝑥̅, is estimated by: 

𝑥̅ =
𝑥1+𝑥2+⋯+ 𝑥𝑁
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The sample standard deviation, denoted as 𝑠, is calculated as the positive square root of the unbiased sample variance 

𝑠2, and is expressed by the following formula: 

𝑠 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1                                                                                (7) 

The coefficient of skewness g is a dimensionless number given by: 

g =
𝑁

(𝑁−1)(𝑁−2)

∑ (𝑥𝑖−𝑥̅)3𝑁
𝑖=1

𝑠3                                                 (8) 

The coefficient of kurtosis k is calculated by: 

k =
𝑁(𝑛+1)

(𝑁−1)(𝑁−2)(𝑁−3)

∑ (𝑥𝑖−𝑥̅)4𝑁
𝑖=1

𝑠4 − 3 [
(𝑁−1)2

(𝑁−2)(𝑁−3)
] − 1                                                            (9) 
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2.6. Probability Distribution Selection and Quantile Estimation  

The most suitable probability distribution for each gauging station was identified using the L-Moment Ratio Diagram 

(L-MRD) and probability plots, as recommended by Fiorillo & Rolla (1989) and Roa & Hamed (2000). Distribution 

parameters were estimated using the Probability-Weighted Moments (PWM) method. To estimate the flood quantile 

𝑄𝑇, it is assumed that the probability of this value being equaled or exceeded in any given year is 1/𝑇, where 𝑇 is the 

return period. Consequently, the probability of non-exceedance of 𝑄𝑇 is expressed as: 

F = 1 – 1/T                                                                                                                     (10)                                         

Where: F is the probability of having a flood of magnitude QT or smaller, and T is the return period. 

2.7. Catchment morphometric analysis   

The magnitude of peak flow within a watershed is influenced by its morphometric attributes, such as area, slope, 

shape, and drainage patterns (Stuckey & Reed, 2000) mainly area, the length of the longest flow path, slope, elongated 

ratio, circularity ratio, and perimeter, which are the most dominant features (Alemu, 2011; Stuckey & Reed, 2000; 

Topaloǧlu, 2002; Tassew et al., 2021). As pointed out in 2.3 above, the catchments' morphometric characteristics are 

estimated by processing the 30m * 30m DEM using Arc GIS and Arc Hydro 10.3 version Tools. 

Best subset analysis is used to select the most influential morphometric features among the six and lessen the 

independent varibles in the regression equations. Reducing the independent variables is crucial since a regression 

equation with a smaller independent variables is preferable and practicable (Sandrock et al., 1992; Stuckey & Reed, 

2000).  Best subset analysis is a simple techniques that offers separate regression anaysis for each of the six catchment 

morphometric features.  

According to Alemu (2011), the shape of a catchment can be characterized using circularity and elongation ratios. The 

circularity ratio (Cr) compares the area of the drainage basin to that of a circle with an equivalent perimeter, providing 

insight into how closely the basin resembles a circular form. The elongation ratio (Er) is defined as the ratio between 

the diameter of a circle with the same area as the basin and the basin’s maximum length, offering a measure of the 

basin’s stretch or compactness (Tassew et al., 2021; Sandrock et al., 1992). The watershed slope reflects the rate of 

change of elevation along the principal flow path (Eldho, 2007).                  

2.8. Regression Analysis   

Regression helps to investigate the existence of any linear or nonlinear functional relationships among a set of 

variables. Hence, hydrological studies have made extensive use of multivariate regression methods, including factor 

analysis, best subset analysis, stepwise regression, and principal component regression (Sandrock et al., 1992; 

Topaloǧlu, 2002). From previous similar work (Topaloǧlu, 2002), the general form of the expected relationship is to 

be non-linear of the following type.  

QT = b0 * A1 b1 * A2 b2 *... * Ai bi                                         (11) 

Where 𝑄𝑇 represents the estimated flood quantile associated with a return period of 𝑇 years. The variables 𝐴1, 𝐴2, 

…, 𝐴𝑖 denote catchment characteristics, while 𝑏1, 𝑏2, …, 𝑏𝑖 are the corresponding regression coefficients, and 𝑏0 is 

a constant term. Since the original relationship is nonlinear, a logarithmic transformation is applied to convert it into 

a linear form. This transformation is a widely used and straightforward technique that enables linear regression to 
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approximate curves typically handled by nonlinear models. As a result, the nonlinear equation can be reformulated as 

a linear expression: 

log QT = b0 +b1log A +b2log Cr + b3log  LL + b4log S                                                    (12) 

2.9. Evaluation of the Regression Models 

Once a regression equation is established, various criteria can be used to assess its effectiveness (Philippe, 2012). One 

of the primary metrics for evaluating model performance is the coefficient of determination (𝑅2). This statistic is 

calculated as the square of the ratio between the covariance of observed and predicted values and the product of their 

standard deviations. As noted by Gebiaw et al. (2017), 𝑅2 ranges from 0 to 1, where values closer to 1 indicate stronger 

predictive accuracy. It provides a concise measure of the model’s explanatory power and is derived from the sums-of 

squares components in the regression analysis. 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                                                                                                                (13) 

Where:       SSE is the sum of squares error, SST is the sum of squares total 

3. Results and discussion  

3.1. Result of data quality test 

Statistical flood frequency analysis relies on two fundamental assumptions: the independence of data points and the 

homogeneity or stationarity of the data series (Rao & Hamed, 2000). Test for independency is not necessary as annual 

hydrological data series are usually expected to be independent. Dependencey is expected in sub-annual data series 

like monthly and daily data sets. However, annual data series might have trend and the series might not be 

homogeneous hence test for trend and homogeneity is necessary. The trend and homogeneity test results are shown 

below in Table 2. 

Table 2. Homogeneity test and trend test results of gauged rivers  

Rivers 

Homogeneity 

test (Üc) 

Tt 

(Trend 

test 

statistic 

Critical value at 5% 

level (normal 

distribution) (u1-α/2) 

Critical value at 5% 

significant level(t-

distribution)(tcr) 

Decision 

G.Abay 0.98 0.789 ±1.96 2.021 Homogeneous/no trend 

Garno 0.302 0.65 ±1.96 2.101 Homogeneous/no trend 

Gemero -1.415 1.94 ±1.96 2.08 Homogeneous/no trend 

Gumera -0.02 0.86 ±1.96 2.048 Homogeneous/no trend 

Koga -3.44 3.03 ±1.96 2.06 Heterogeneous/has a trend 

Megech -0.14 -0.21 ±1.96 2.093 Homogeneous/no trend 

Gelda -1.65 1.31 ±1.96 2.056 Homogeneous/no trend 

Qushini 1.693 -1.04 ±1.96 2.086 Homogeneous/no trend 

As indicated in Table 2, the streamflow data for the Koga River exhibit both a significant trend and heterogeneity. To 

assess homogeneity, the test statistic 𝑈𝑐 is applied at a 5% significance level (𝛼 = 0.05) and compared against the 
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corresponding critical value from the standard normal distribution. As shown from the table, the value of |Uc| is 3.44; 

this value is greater than the critical value at the 5% level (standard normal distribution), which is 1.96. The trend test 

result also shows that the Koga river flow data has a trend, and no trend for other rivers. The t-test value is 3.03, which 

is greater than the critical value at 5% significance level and n-2 degrees of freedom(t-distribution) (t0.025,25), which is 

2.06. Consequently, to develop a representative model, we removed those stations before passing further flood 

frequency analysis, and then we used seven stations only.  

3.2. Descriptive statistics 

Descriptive statistical measures essential for selecting appropriate probability distributions and estimating their 

parameters were computed. These include the central moments: mean (𝑚1), variance (𝑚2), skewness (𝑚3), and 

kurtosis (𝑚4). 

Table 3. Descriptive statistics of the available streamflow data 

Rivers 

 

Descriptive statistic 

Mean  Variance Sekewness Kortosis 

G.Abay 336.72  6023.32  816964.36  288934459 

Garno 18.81  224.70  7033.67  382326.6431 

Gmero 67.96  3308.65  251233.33  56332347.62 

Gumera 252.84  2797.29  103595.66 31928421.89 

Megech 138.87  5666.37  360090.83  114904416.1 

Gelda 45.13  2051.29  198350.84  31905389.53 

Qushini 12.16  22.72  94.99  2213.77  

Additional key metrics for determining the appropriate at-site probability distribution include the L-moments and L-

moment ratios. The calculated values of these sample statistics are presented in Table 4. 

Table 4. Sample L-moments of the stream flow data 

Rivers Βo β1 β2 β3 λ1 λ2 λ3 λ4 τ τ3 τ4 

G.Abay 336.72 181.29 127.52 98.99 336.72 25.86 14.07 -6.87 0.08 0.54 -0.27 

Garno 18.82 12.86 10.15 8.53 18.82 6.90 2.57 1.45 0.37 0.37 0.21 

Gmero 67.97 48.78 38.70 32.25 67.97 29.59 7.48 1.41 0.44 0.25 0.05 

Gumera 252.84 140.66 98.71 76.48 252.84 28.47 1.17 3.39 0.11 0.04 0.12 

Megech 138.87 89.64 67.50 54.55 138.87 40.40 6.07 2.80 0.29 0.15 0.07 

Gelda 45.13 32.94 26.81 22.96 45.13 20.75 8.35 5.14 0.46 0.40 0.25 

Qushini 12.16 7.35 5.37 4.27 12.16 2.53 0.27 0.35 0.21 0.11 0.14 
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3.3. Selected Probability distributions  

The L-Moment Ratio Diagram (L-MRD) is a widely recognized and effective tool for selecting the most suitable at-

site probability distribution. In this study, a range of candidate distributions including Generalized Extreme Value, 

Generalized Logistic, Lognormal, Generalized Pareto, Pearson Type III, Uniform, Exponential Gumbel (EV1), 

Logistic, Normal, and Wakeby were initially considered and evaluated using the L-MRD approach. Fig. 4 illustrates 

the L-moment ratio diagram highlighting the five most appropriate distributions identified for the G. Abay River. 

 

Fig. 4. L-moment ratio diagram for G.Abay River 

Note: - GEV: Generalized Extreme Value, GLOG: Generalized Logistic, LOGN: Lognormal, GPAR: Generalized 

Pareto, P-3: Person type III, uni: Uniform. 

When the plotted point of L-skewness (𝑡3) versus L-kurtosis (𝑡4) for a station aligns with the theoretical curve of a 

specific distribution on the L-Moment Ratio Diagram, that distribution is considered the best fit for the station. In the 

case of the G. Abay River, the L-MRD shows that the point corresponding to 𝑡3 and 𝑡4 lies on or near the curve of the 

Pearson Type III (P3) distribution, indicating it as the most suitable model. As summarized in Table 5, the P3, 

Generalized Pareto (GPAR), Lognormal (LOGN), and Generalized Extreme Value (GEV) distributions emerged as 

the best-fit models for the gauged rivers within the Lake Tana sub-basin.Table 5. Best fit distribution of each station  

Rivers G.Abay Garno Gmero Gumera Megech Qushini Gelda 

fitted distribution P3 

 

GPAR GPAR GEV GPAR LOGN LOGN 

On the other hand, observed data are plotted against the values estimated from the fitted distributions selected from 

L-MRD. The relationship appears as a straight line through the origin with 450 slopes for all rivers, which means all 

fitted distributions are exact parent distributions.  
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3.3.1. Probability distribution parameter estimation 

Following the selection of an at-site probability distribution, its parameters were estimated using PWM. The estimated 

parameters shown in Table 6 are used to estimate the quantile for different return periods. 

Table 6.  Estimated Parameter value of the selected distribution in each station  

Station  Selected 

distribution  

Parameters estimated 

by PWM  

Station  Selected 

distribution  

Parameters estimated by PWM 

                       Parameter     Value                            Parameter                                     Value                    

G.Abay  P3  K  

α  

ε  

0.34  

110.71  

298.75  

Megech  GPAR  K  

α  

ε  

0.48 

147.93 

38.77 

Garno  GPAR  K  

α  

ε  

-0.09 

12.07 

5.61 

Gelda  LOGN µ  

σ  

 

3.40  

0.94 

Gmero  GPAR  K  

α  

ε  

0.19 

77.40 

3.08 

Qushini LOGN µ  

σ  

 

2.43 

0.40  

Gumera  GEV c  

K  

α  

u 

0.03 

0.21 

6.11 

262.54  

    

3.4. Quantile estimation  

Estimation of peak flow requires the specification of the frequency of occurrence of the event by specifying its return 

period. In this study peak discharge (Q) was obtained for the following return periods. The 1 in 10 years = Q10, the 1 

in 25 years = Q25, the 1 in 50 years = Q50, the 1 in 100 years = Q100 and the 1 in 200 years = Q200.  

Table 7. Shows the derived Peak flow frequency for all gauged stations 

Station  Selected distribution  Return period  

             10 year  25 year        50 year    100 year    200 year  

G.Abay  P3  403.97 476.26 559.09 603.53 770.00 

Garno  GPAR  36.35 50.39 61.76 73.84 86.66 

Gmero  GPAR  146.99 188.69 215.68 239.30 259.96 

Gumera  GEV  276.38 279.11 280.81 282.26 283.51 

Megech  GPAR  245.34 281.87 300.63 314.09 323.76 

Gelda  LOGN  41.70 57.95 71.49 86.22 102.23 

Qushini LOGN  12.96 14.83 16.17 17.46 18.72 

Note: Column 2 of Table 7 indicates the probability distribution that yielded the best fit for each dataset. Columns 3 

through 7 present the estimated peak flow values corresponding to the specified return periods. 
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AS shown in Table 7, the peak flow is increased with increasing return flow in all stations. This is general truth in 

flood frequency analysis. The peak flow is highly dependent on climate and physiographic catchment characteristics.  

3.5. Catchment Morphometric Characteristics  

DEM-Hydro process through GIS with Arc Hydro Tool 10.3 software using outlet location coordinates of the 

catchments, the area, perimeter, and other selected catchment characteristics have been extracted.   

Table 8. Summary of catchment physiographic characteristics result  

Rivers  Area (km2)  Perimeter 

(km)  

Circularity 

ratio  

Elongated 

ratio  

Slope 

(m/km)  

Longest flow  

   path (km)  

G.Abay  1664 309.68 0.22 0.60 9.55 77.18 

Garno  94 67.84 0.26 0.55 48.43 19.79 

Gmero  174 97.36 0.23 0.61 36.20 24.52 

Gumera  1394 297.48 0.20 0.49 23.62 86.06 

Megech  462 151.64 0.25 0.55 23.91 43.93 

Gelda  32 36.48 0.30 0.55 35.44 11.66 

Qushini  42 25.32 0.82 0.82 25.50 8.91 

As illustrated in Table 8, the Gumara and G. Abay watersheds exhibit relatively higher circularity compared to the 

other catchments. This suggests that rainfall within the Garno and Megech watersheds has a shorter flow path to reach 

the stream network and exit the basin at its outlet. Qushini and Gelda watersheds are more elongated than other 

watersheds. Alemu, (2011) reported that the circularity ratio of the Gumara River is 0.35 there is some difference with 

this study, this is because of the software used for estimating catchment characteristics. Tassew et al., (2021) also 

estimated the physiographic catchment characteristics of major watersheds of the Lake Tana sub-basin. He reported 

that the circularity ratio of G. Abay, Megech, and Gumara watersheds are 0.28, 0.25, and 0.41 respectively and the 

elongated ratios are 0.49, 0.52, and 0.51 respectively. The results are relatively similar to the result computed by this 

study but due to the selection of the outlet points of the watersheds there are some differences. 

3.6. Developed Regression Equations  

3.6.1. Selection of independent variables  

Best subset analysis was employed to identify the most suitable explanatory variables for the regression model, as it 

allows for evaluating multiple regression solutions across various physiographic factors. The selection process was 

constrained to models containing up to four explanatory variables, using a 5% significance threshold (α = 0.05). 

Models were chosen based on the highest coefficient of determination (𝑅2) and by inspecting residual versus fitted 

value scatter plots. To determine the optimal subsets, three key criteria were considered: maximum 𝑅2, maximum 

adjusted 𝑅2, and the Mallows 𝐶𝑝 

 statistic.Table 9. Best subset analysis results for 10 year return period 

Vari                                            Mallows                

ables      R-Sq       R-Sq(adj)         Cp      A   Cr    Er        LL            S 
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  1            93.0             91.5          10.6     X 

  1            81.8            78.2           32.1                                 X 

  2            95.0             92.5          8.7     X                                           X 

  2            94.6             91.9          9.5     X        X 

  3            98.6             97.3          3.6                X                  X            X 

  3            97.9            95.8           5.0     X         X                                X 

  4            99.5            98.4          4.0     X          X                   X            X 

  4           99.0            97.1           4.9                  X        X       X            X 

  5           99.5             96.9          6.0     X          X         X       X           X 

Not: Key variables and statistical indicators used in the regression analysis include: R-Sq (coefficient of 

determination), R-Sq (adj) (adjusted coefficient of determination), Cp (Mallows' statistic), A (basin area), LL (stream 

length), S (basin slope), Cr (circularity ratio), and Er (elongation ratio). Based on the best subset regression analysis 

presented in Table 9, it was found that models incorporating four variables are adequate for estimating flood peaks 

across all return periods. The most influential variables identified were basin area (A), longest stream length (LL), 

channel slope (S), and circularity ratio (Cr). 

Table 10. Result of best subset analysis for all return periods 

Peak flow with 

return period  

Variables  R-Sq  R-Sq(adj)  Mallows Cp  

Q10  4  99.5  98.4  4  

Q25  4  99.3  97.8  4  

Q50  4  99.1  97.3  4  

Q100  4  98.9  96.6  4.2  

Q200  4  98.6  95.7  4.4  

3.6.2.  Development of regression equations  

Multiple general regression analyses were conducted to formulate regression equations for each return period, guided 

by the outcomes of the best subset analysis. Prior to modeling, a logarithmic transformation was applied to the data to 

linearize the relationships. The regression modeling was performed using Minitab software. The resulting equations 

are presented in a compact form as follows: 

Qn = kn *Aan
 *(Cr)bn *(LL)cn *Sdn                                          (14) 

Where: Qn Peak flow for n year return period, kn is constant, an is the regression coefficients of area, bn is the regression 

coefficient of circularity ratio, cn is the regression coefficient of main stream length, dn is the regression coefficient of 

average channel slope, n is the return period.  

For example, the final regression equations for 50 recurrence intervals with the coefficient of determination (R2) are 

shown below in nonlinear form.     

Q50 = 204.17 *A^1.2*Cr^-2.60 *LL^-2.31 *S^-0.78                                            (R2) =97.95% 

Table 11. Coefficients and respective R2 of the developed regression equations for all recurrence intervals 

4              99.5                 98.4                4.0      X            X                       X               X  



Walelign K. Endalew et. al. (2025)                                                                     PJET, Vol. 3, No. 2, (2025) 

 

26 
 

Qn  kn  an  bn  cn  dn  Coefficient of 

Determination (R2) 

Q10  36.31 1.07 -1.97  -1.63  - 0.58        96.23% 

Q25  91.20 1.17 -2.35 -2.08 - 0.67    97.11%      

Q50  204.17 1.2 -2.60  -2.31 - 0.78    97.95%      

Q100  346.74 1.17 -2.75  -2.37  - 0.84    98.43%      

Q200  1000 1.18 -2.99 -2.57  - 1.04   99.25%      

Topaloǧlu (2002) has developed similar regional regression equations for estimating instantaneous peak flow for the 

Seyhan River Basin. He used three independent variables, such as annual peak daily mean areal precipitation (PT), 

area of the basin (AB), and stream frequency (SF). However, the coefficients are relatively similar to the coefficients 

of this study, for example, 10-year return period, an = 2.03, bn = 1.35, and cn = 2.13. The variation of those coefficients 

is because of the spatial and temporal variation of the physiographic catchment characteristics.  

3.7. Model Performance Evaluation and Validation  

According to the result of statistical measures, nonlinear regression analysis with four variables gives the best result. 

In addition, the nonlinear regression analysis relationship is more effective in the Lake Tana sub-basin. The coefficient 

of determination (R2) of the model evaluation criteria shows that the developed model has very good model efficiency.  

Table 12. Summary of model evaluation 

Model R2 (%) RMSE MAE NSE 

Q10 99.29 7.166 5.239 0.996 

Q25 96.46 7.637 4.393 0.997 

Q50 97.76 9.726 9.726 0.995 

Q100 98.22 12.474 4.592 0.993 

Q200 99.35 13.899 8.524 0.992 

As presented in Table 12, the regression equations developed in this study demonstrate strong reliability, supported 

by consistent performance across all evaluation metrics. Following model development, validation was conducted 

using data from one measuring station, while six gauging stations were used to construct the model. The validation 

process, performed with flow data from the Megech River, revealed a close match between observed and predicted 

peak flows for return periods of 10, 25, 50, and 100 years. The high coefficient of determination (𝑅2=98.1%) confirms 

the model’s accuracy and robustness for estimating flood peaks. 

4. Conclusions  

Accurately estimating design peak flows remains a major challenge for hydrologists and engineers, particularly when 

planning hydraulic structures in ungauged catchments. This study addresses that challenge by developing regression 

equations that link key catchment morphometric characteristics—namely basin area (A), channel slope (S), circularity 

ratio (Cr), and longest stream length (LL)—to design peak flows for return periods of 10, 25, 50, 100, and 200 years. 

The general form of the developed equations is expressed as: 𝑄𝑛 = 𝑘𝑛⋅𝐴𝑎𝑛⋅𝐶𝑟𝑏𝑛⋅𝐿𝐿𝑐𝑛⋅𝑆𝑑𝑛. These four morphometric 

parameters are sufficient to estimate design peak flows at ungauged sites. On-site flood frequency analysis revealed 

that the Pearson Type III (P3), General Logistic (GLOG), and General Pareto (GPAR) distributions provided the best 
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fit for rivers within the sub-basin. The regression models demonstrated high predictive performance, with coefficient 

of determination (𝑅2) values approaching 1 across all return periods. As such, these models offer a practical and 

simplified alternative for estimating design peak flows in ungauged catchments within the Lake Tana sub-basin and 

other hydrologically similar regions. 
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